Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
232 changes: 232 additions & 0 deletions lib/node_modules/@stdlib/stats/base/dists/halfnormal/logcdf/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
<!--

@license Apache-2.0

Copyright (c) 2026 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# Logarithm of Cumulative Distribution Function

> Evaluate the natural logarithm of the cumulative distribution function (CDF) for a [half-normal][half-normal-distribution] distribution.

<section class="intro">

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var logcdf = require( '@stdlib/stats/base/dists/halfnormal/logcdf' );
```

#### logcdf( x, sigma )

Evaluates the natural logarithm of the [cumulative distribution function][cdf] (CDF) for a [half-normal][half-normal-distribution] distribution with parameter `sigma` (standard deviation).

```javascript
var y = logcdf( 2.0, 1.0 );
// returns ~-0.0466

y = logcdf( 1.0, 2.0 );
// returns ~-0.960

```

If provided `NaN` as any argument, the function returns `NaN`.

```javascript
var y = logcdf( NaN, 1.0 );
// returns NaN

y = logcdf( 0.0, NaN );
// returns NaN
```

If provided `sigma < 0`, the function returns `NaN`.

```javascript
var y = logcdf( 2.0, -1.0 );
// returns NaN
```

If provided `sigma = 0`, the function returns `NaN`.

```javascript
var y = logcdf( 2.0, 0.0 );
// returns NaN
```

#### logcdf.factory( sigma )

Returns a `function` for evaluating the [cumulative distribution function][cdf] (CDF) of a [half-normal][half-normal-distribution] distribution with parameter `sigma` (standard deviation).

```javascript
var mylogcdf = logcdf.factory( 2.0 );

var y = mylogcdf( 1.0 );
// returns ~-0.960

y = mylogcdf( 4.0 );
// returns ~-0.0466
```

</section>

<!-- /.usage -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var uniform = require( '@stdlib/random/array/uniform' );
var logEachMap = require( '@stdlib/console/log-each-map' );
var logcdf = require( '@stdlib/stats/base/dists/halfnormal/logcdf' );

var opts = {
'dtype': 'float64'
};
var sigma = uniform( 10, 0.1, 20.0, opts );
var x = uniform( 10, 0.0, 10.0, opts );

logEachMap( 'x: %lf, σ: %lf, ln(F(x;σ)): %lf', x, sigma, logcdf );
```

</section>

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/dists/halfnormal/logcdf.h"
```

#### stdlib_base_dists_halfnormal_logcdf( x, sigma )

Evaluates the natural logarithm of the [cumulative distribution function][cdf] (CDF) for a [half-normal][half-normal-distribution] distribution with parameter `sigma` (standard deviation).

```c
double out = stdlib_base_dists_halfnormal_logcdf( 2.0, 1.0 );
// returns ~-0.046
```

The function accepts the following arguments:

- **x**: `[in] double` input value.
- **sigma**: `[in] double` standard deviation.

```c
double stdlib_base_dists_halfnormal_logcdf( const double x, const double sigma );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/dists/halfnormal/logcdf.h"
#include <stdlib.h>
#include <stdio.h>

static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}

int main( void ) {
double sigma;
double x;
double y;
int i;

for ( i = 0; i < 10; i++ ) {
x = random_uniform( 0.0, 10.0 );
sigma = random_uniform( 0.1, 20.0 );
y = stdlib_base_dists_halfnormal_logcdf( x, sigma );
printf( "x: %lf, σ: %lf, ln(F(x;σ)): %lf\n", x, sigma, y );
}
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function

[half-normal-distribution]: https://en.wikipedia.org/wiki/Half-normal_distribution

</section>

<!-- /.links -->

Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var EPS = require( '@stdlib/constants/float64/eps' );
var format = require( '@stdlib/string/format' );
var pkg = require( './../package.json' ).name;
var logcdf = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var sigma;
var len;
var x;
var y;
var i;

len = 100;
x = uniform( len, -10.0, 10.0 );
sigma = uniform( len, EPS, 20.0 + EPS );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
y = logcdf( x[ i % len ], sigma[ i % len ] );
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();

if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( format( '%s::factory', pkg ), function benchmark( b ) {
var mylogcdf;
var sigma;
var x;
var y;
var i;

sigma = 1.5;
mylogcdf = logcdf.factory( sigma );
x = uniform( 100, -3.0, 6.0 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
y = mylogcdf( x[ i % x.length ] );
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();

if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var tryRequire = require( '@stdlib/utils/try-require' );
var EPS = require( '@stdlib/constants/float64/eps' );
var format = require( '@stdlib/string/format' );
var pkg = require( './../package.json' ).name;


// VARIABLES //

var logcdf = tryRequire( resolve( __dirname, './../lib/native.js' ) );
var opts = {
'skip': ( logcdf instanceof Error )
};


// MAIN //

bench( format( '%s::native', pkg ), opts, function benchmark( b ) {
var sigma;
var len;
var x;
var y;
var i;

len = 100;
x = uniform( len, -10.0, 10.0 );
sigma = uniform( len, EPS, 20.0 + EPS );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
y = logcdf( x[ i % len ], sigma[ i % len ] );
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();

if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Loading