Skip to content

AphroDatalyst/IntelliQuery

Repository files navigation

IntelliQuery - Local RAG (Ollama)

Local RAG system over PDFs with conversation memory, hybrid search, re-ranking and citation-grounded answers.

  • Pipeline: PDF ingestion → chunking → embedding (Ollama) → Chroma vector store → retrieval → rerank → LLM generation → strict fallback

Features

  • PDF ingestion with chunking
  • Dense + hybrid retrieval (BM25 + embeddings)
  • Multi-turn memory
  • Query normalization & expansion
  • Sentence-level citations
  • Retrieval confidence & grounding validation
  • Streamlit chat UI with persistent history

Metrics: Precision@k, Recall@k, MRR, Answer Relevance & Groundedness

Quick Start

pip install -r requirements.txt
ollama pull hf.co/CompendiumLabs/bge-base-en-v1.5-gguf
ollama pull hf.co/bartowski/Llama-3.2-1B-Instruct-GGUF
streamlit run app.py
  • Upload PDFs → Build Index → Ask Questions

Next branch (planned)

  • multi-modal-rag → add image/PDF-table ingestion